/** @file GuillotineBinPack.cpp @author Jukka Jylänki @brief Implements different bin packer algorithms that use the GUILLOTINE data structure. This work is released to Public Domain, do whatever you want with it. */ #include #include #include #include #include #include #include #include "GuillotineBinPack.h" #pragma warning( disable : 4267 ) namespace rbp { using namespace std; GuillotineBinPack::GuillotineBinPack() :binWidth(0), binHeight(0) { } GuillotineBinPack::GuillotineBinPack(int width, int height) { Init(width, height); } void GuillotineBinPack::Init(int width, int height) { binWidth = width; binHeight = height; #ifdef _DEBUG disjointRects.Clear(); #endif // Clear any memory of previously packed rectangles. usedRectangles.clear(); // We start with a single big free rectangle that spans the whole bin. Rect n; n.x = 0; n.y = 0; n.width = width; n.height = height; freeRectangles.clear(); freeRectangles.push_back(n); } void GuillotineBinPack::Insert(std::vector &rects, bool merge, FreeRectChoiceHeuristic rectChoice, GuillotineSplitHeuristic splitMethod) { // Remember variables about the best packing choice we have made so far during the iteration process. int bestFreeRect = 0; int bestRect = 0; bool bestFlipped = false; // Pack rectangles one at a time until we have cleared the rects array of all rectangles. // rects will get destroyed in the process. while(rects.size() > 0) { // Stores the penalty score of the best rectangle placement - bigger=worse, smaller=better. int bestScore = std::numeric_limits::max(); for(size_t i = 0; i < freeRectangles.size(); ++i) { for(size_t j = 0; j < rects.size(); ++j) { // If this rectangle is a perfect match, we pick it instantly. if (rects[j].width == freeRectangles[i].width && rects[j].height == freeRectangles[i].height) { bestFreeRect = i; bestRect = j; bestFlipped = false; bestScore = std::numeric_limits::min(); i = freeRectangles.size(); // Force a jump out of the outer loop as well - we got an instant fit. break; } // If flipping this rectangle is a perfect match, pick that then. /*else if (rects[j].height == freeRectangles[i].width && rects[j].width == freeRectangles[i].height) { bestFreeRect = i; bestRect = j; bestFlipped = true; bestScore = std::numeric_limits::min(); i = freeRectangles.size(); // Force a jump out of the outer loop as well - we got an instant fit. break; }*/ // Try if we can fit the rectangle upright. else if (rects[j].width <= freeRectangles[i].width && rects[j].height <= freeRectangles[i].height) { int score = ScoreByHeuristic(rects[j].width, rects[j].height, freeRectangles[i], rectChoice); if (score < bestScore) { bestFreeRect = i; bestRect = j; bestFlipped = false; bestScore = score; } } // If not, then perhaps flipping sideways will make it fit? /*else if (rects[j].height <= freeRectangles[i].width && rects[j].width <= freeRectangles[i].height) { int score = ScoreByHeuristic(rects[j].height, rects[j].width, freeRectangles[i], rectChoice); if (score < bestScore) { bestFreeRect = i; bestRect = j; bestFlipped = true; bestScore = score; } }*/ } } // If we didn't manage to find any rectangle to pack, abort. if (bestScore == std::numeric_limits::max()) return; // Otherwise, we're good to go and do the actual packing. Rect newNode; newNode.x = freeRectangles[bestFreeRect].x; newNode.y = freeRectangles[bestFreeRect].y; newNode.width = rects[bestRect].width; newNode.height = rects[bestRect].height; if (bestFlipped) std::swap(newNode.width, newNode.height); // Remove the free space we lost in the bin. SplitFreeRectByHeuristic(freeRectangles[bestFreeRect], newNode, splitMethod); freeRectangles.erase(freeRectangles.begin() + bestFreeRect); // Remove the rectangle we just packed from the input list. rects.erase(rects.begin() + bestRect); // Perform a Rectangle Merge step if desired. if (merge) MergeFreeList(); // Remember the new used rectangle. usedRectangles.push_back(newNode); // Check that we're really producing correct packings here. debug_assert(disjointRects.Add(newNode) == true); } } /// @return True if r fits inside freeRect (possibly rotated). bool Fits(const RectSize &r, const Rect &freeRect) { return (r.width <= freeRect.width && r.height <= freeRect.height) || (r.height <= freeRect.width && r.width <= freeRect.height); } /// @return True if r fits perfectly inside freeRect, i.e. the leftover area is 0. bool FitsPerfectly(const RectSize &r, const Rect &freeRect) { return (r.width == freeRect.width && r.height == freeRect.height) || (r.height == freeRect.width && r.width == freeRect.height); } /* // A helper function for GUILLOTINE-MAXFITTING. Counts how many rectangles fit into the given rectangle // after it has been split. void CountNumFitting(const Rect &freeRect, int width, int height, const std::vector &rects, int usedRectIndex, bool splitHorizontal, int &score1, int &score2) { const int w = freeRect.width - width; const int h = freeRect.height - height; Rect bottom; bottom.x = freeRect.x; bottom.y = freeRect.y + height; bottom.height = h; Rect right; right.x = freeRect.x + width; right.y = freeRect.y; right.width = w; if (splitHorizontal) { bottom.width = freeRect.width; right.height = height; } else // Split vertically { bottom.width = width; right.height = freeRect.height; } int fitBottom = 0; int fitRight = 0; for(size_t i = 0; i < rects.size(); ++i) if (i != usedRectIndex) { if (FitsPerfectly(rects[i], bottom)) fitBottom |= 0x10000000; if (FitsPerfectly(rects[i], right)) fitRight |= 0x10000000; if (Fits(rects[i], bottom)) ++fitBottom; if (Fits(rects[i], right)) ++fitRight; } score1 = min(fitBottom, fitRight); score2 = max(fitBottom, fitRight); } */ /* // Implements GUILLOTINE-MAXFITTING, an experimental heuristic that's really cool but didn't quite work in practice. void GuillotineBinPack::InsertMaxFitting(std::vector &rects, std::vector &dst, bool merge, FreeRectChoiceHeuristic rectChoice, GuillotineSplitHeuristic splitMethod) { dst.clear(); int bestRect = 0; bool bestFlipped = false; bool bestSplitHorizontal = false; // Pick rectangles one at a time and pack the one that leaves the most choices still open. while(rects.size() > 0 && freeRectangles.size() > 0) { int bestScore1 = -1; int bestScore2 = -1; ///\todo Different sort predicates. clb::sort::QuickSort(&freeRectangles[0], freeRectangles.size(), CompareRectShortSide); Rect &freeRect = freeRectangles[0]; for(size_t j = 0; j < rects.size(); ++j) { int score1; int score2; if (rects[j].width == freeRect.width && rects[j].height == freeRect.height) { bestRect = j; bestFlipped = false; bestScore1 = bestScore2 = std::numeric_limits::max(); break; } else if (rects[j].width <= freeRect.width && rects[j].height <= freeRect.height) { CountNumFitting(freeRect, rects[j].width, rects[j].height, rects, j, false, score1, score2); if (score1 > bestScore1 || (score1 == bestScore1 && score2 > bestScore2)) { bestRect = j; bestScore1 = score1; bestScore2 = score2; bestFlipped = false; bestSplitHorizontal = false; } CountNumFitting(freeRect, rects[j].width, rects[j].height, rects, j, true, score1, score2); if (score1 > bestScore1 || (score1 == bestScore1 && score2 > bestScore2)) { bestRect = j; bestScore1 = score1; bestScore2 = score2; bestFlipped = false; bestSplitHorizontal = true; } } if (rects[j].height == freeRect.width && rects[j].width == freeRect.height) { bestRect = j; bestFlipped = true; bestScore1 = bestScore2 = std::numeric_limits::max(); break; } else if (rects[j].height <= freeRect.width && rects[j].width <= freeRect.height) { CountNumFitting(freeRect, rects[j].height, rects[j].width, rects, j, false, score1, score2); if (score1 > bestScore1 || (score1 == bestScore1 && score2 > bestScore2)) { bestRect = j; bestScore1 = score1; bestScore2 = score2; bestFlipped = true; bestSplitHorizontal = false; } CountNumFitting(freeRect, rects[j].height, rects[j].width, rects, j, true, score1, score2); if (score1 > bestScore1 || (score1 == bestScore1 && score2 > bestScore2)) { bestRect = j; bestScore1 = score1; bestScore2 = score2; bestFlipped = true; bestSplitHorizontal = true; } } } if (bestScore1 >= 0) { Rect newNode; newNode.x = freeRect.x; newNode.y = freeRect.y; newNode.width = rects[bestRect].width; newNode.height = rects[bestRect].height; if (bestFlipped) std::swap(newNode.width, newNode.height); assert(disjointRects.Disjoint(newNode)); SplitFreeRectAlongAxis(freeRect, newNode, bestSplitHorizontal); rects.erase(rects.begin() + bestRect); if (merge) MergeFreeList(); usedRectangles.push_back(newNode); #ifdef _DEBUG disjointRects.Add(newNode); #endif } freeRectangles.erase(freeRectangles.begin()); } } */ Rect GuillotineBinPack::Insert(int width, int height, bool merge, FreeRectChoiceHeuristic rectChoice, GuillotineSplitHeuristic splitMethod) { // Find where to put the new rectangle. int freeNodeIndex = 0; Rect newRect = FindPositionForNewNode(width, height, rectChoice, &freeNodeIndex); // Abort if we didn't have enough space in the bin. if (newRect.height == 0) return newRect; // Remove the space that was just consumed by the new rectangle. SplitFreeRectByHeuristic(freeRectangles[freeNodeIndex], newRect, splitMethod); freeRectangles.erase(freeRectangles.begin() + freeNodeIndex); // Perform a Rectangle Merge step if desired. if (merge) MergeFreeList(); // Remember the new used rectangle. usedRectangles.push_back(newRect); // Check that we're really producing correct packings here. debug_assert(disjointRects.Add(newRect) == true); return newRect; } /// Computes the ratio of used surface area to the total bin area. float GuillotineBinPack::Occupancy() const { ///\todo The occupancy rate could be cached/tracked incrementally instead /// of looping through the list of packed rectangles here. unsigned long usedSurfaceArea = 0; for(size_t i = 0; i < usedRectangles.size(); ++i) usedSurfaceArea += usedRectangles[i].width * usedRectangles[i].height; return (float)usedSurfaceArea / (binWidth * binHeight); } /// Returns the heuristic score value for placing a rectangle of size width*height into freeRect. Does not try to rotate. int GuillotineBinPack::ScoreByHeuristic(int width, int height, const Rect &freeRect, FreeRectChoiceHeuristic rectChoice) { switch(rectChoice) { case RectBestAreaFit: return ScoreBestAreaFit(width, height, freeRect); case RectBestShortSideFit: return ScoreBestShortSideFit(width, height, freeRect); case RectBestLongSideFit: return ScoreBestLongSideFit(width, height, freeRect); case RectWorstAreaFit: return ScoreWorstAreaFit(width, height, freeRect); case RectWorstShortSideFit: return ScoreWorstShortSideFit(width, height, freeRect); case RectWorstLongSideFit: return ScoreWorstLongSideFit(width, height, freeRect); default: assert(false); return std::numeric_limits::max(); } } int GuillotineBinPack::ScoreBestAreaFit(int width, int height, const Rect &freeRect) { return freeRect.width * freeRect.height - width * height; } int GuillotineBinPack::ScoreBestShortSideFit(int width, int height, const Rect &freeRect) { int leftoverHoriz = abs(freeRect.width - width); int leftoverVert = abs(freeRect.height - height); int leftover = min(leftoverHoriz, leftoverVert); return leftover; } int GuillotineBinPack::ScoreBestLongSideFit(int width, int height, const Rect &freeRect) { int leftoverHoriz = abs(freeRect.width - width); int leftoverVert = abs(freeRect.height - height); int leftover = max(leftoverHoriz, leftoverVert); return leftover; } int GuillotineBinPack::ScoreWorstAreaFit(int width, int height, const Rect &freeRect) { return -ScoreBestAreaFit(width, height, freeRect); } int GuillotineBinPack::ScoreWorstShortSideFit(int width, int height, const Rect &freeRect) { return -ScoreBestShortSideFit(width, height, freeRect); } int GuillotineBinPack::ScoreWorstLongSideFit(int width, int height, const Rect &freeRect) { return -ScoreBestLongSideFit(width, height, freeRect); } Rect GuillotineBinPack::FindPositionForNewNode(int width, int height, FreeRectChoiceHeuristic rectChoice, int *nodeIndex) { Rect bestNode; memset(&bestNode, 0, sizeof(Rect)); int bestScore = std::numeric_limits::max(); /// Try each free rectangle to find the best one for placement. for(size_t i = 0; i < freeRectangles.size(); ++i) { // If this is a perfect fit upright, choose it immediately. if (width == freeRectangles[i].width && height == freeRectangles[i].height) { bestNode.x = freeRectangles[i].x; bestNode.y = freeRectangles[i].y; bestNode.width = width; bestNode.height = height; bestScore = std::numeric_limits::min(); *nodeIndex = i; debug_assert(disjointRects.Disjoint(bestNode)); break; } // If this is a perfect fit sideways, choose it. else if (height == freeRectangles[i].width && width == freeRectangles[i].height) { bestNode.x = freeRectangles[i].x; bestNode.y = freeRectangles[i].y; bestNode.width = height; bestNode.height = width; bestScore = std::numeric_limits::min(); *nodeIndex = i; debug_assert(disjointRects.Disjoint(bestNode)); break; } // Does the rectangle fit upright? else if (width <= freeRectangles[i].width && height <= freeRectangles[i].height) { int score = ScoreByHeuristic(width, height, freeRectangles[i], rectChoice); if (score < bestScore) { bestNode.x = freeRectangles[i].x; bestNode.y = freeRectangles[i].y; bestNode.width = width; bestNode.height = height; bestScore = score; *nodeIndex = i; debug_assert(disjointRects.Disjoint(bestNode)); } } // Does the rectangle fit sideways? else if (height <= freeRectangles[i].width && width <= freeRectangles[i].height) { int score = ScoreByHeuristic(height, width, freeRectangles[i], rectChoice); if (score < bestScore) { bestNode.x = freeRectangles[i].x; bestNode.y = freeRectangles[i].y; bestNode.width = height; bestNode.height = width; bestScore = score; *nodeIndex = i; debug_assert(disjointRects.Disjoint(bestNode)); } } } return bestNode; } void GuillotineBinPack::SplitFreeRectByHeuristic(const Rect &freeRect, const Rect &placedRect, GuillotineSplitHeuristic method) { // Compute the lengths of the leftover area. const int w = freeRect.width - placedRect.width; const int h = freeRect.height - placedRect.height; // Placing placedRect into freeRect results in an L-shaped free area, which must be split into // two disjoint rectangles. This can be achieved with by splitting the L-shape using a single line. // We have two choices: horizontal or vertical. // Use the given heuristic to decide which choice to make. bool splitHorizontal; switch(method) { case SplitShorterLeftoverAxis: // Split along the shorter leftover axis. splitHorizontal = (w <= h); break; case SplitLongerLeftoverAxis: // Split along the longer leftover axis. splitHorizontal = (w > h); break; case SplitMinimizeArea: // Maximize the larger area == minimize the smaller area. // Tries to make the single bigger rectangle. splitHorizontal = (placedRect.width * h > w * placedRect.height); break; case SplitMaximizeArea: // Maximize the smaller area == minimize the larger area. // Tries to make the rectangles more even-sized. splitHorizontal = (placedRect.width * h <= w * placedRect.height); break; case SplitShorterAxis: // Split along the shorter total axis. splitHorizontal = (freeRect.width <= freeRect.height); break; case SplitLongerAxis: // Split along the longer total axis. splitHorizontal = (freeRect.width > freeRect.height); break; default: splitHorizontal = true; assert(false); } // Perform the actual split. SplitFreeRectAlongAxis(freeRect, placedRect, splitHorizontal); } /// This function will add the two generated rectangles into the freeRectangles array. The caller is expected to /// remove the original rectangle from the freeRectangles array after that. void GuillotineBinPack::SplitFreeRectAlongAxis(const Rect &freeRect, const Rect &placedRect, bool splitHorizontal) { // Form the two new rectangles. Rect bottom; bottom.x = freeRect.x; bottom.y = freeRect.y + placedRect.height; bottom.height = freeRect.height - placedRect.height; Rect right; right.x = freeRect.x + placedRect.width; right.y = freeRect.y; right.width = freeRect.width - placedRect.width; if (splitHorizontal) { bottom.width = freeRect.width; right.height = placedRect.height; } else // Split vertically { bottom.width = placedRect.width; right.height = freeRect.height; } // Add the new rectangles into the free rectangle pool if they weren't degenerate. if (bottom.width > 0 && bottom.height > 0) freeRectangles.push_back(bottom); if (right.width > 0 && right.height > 0) freeRectangles.push_back(right); debug_assert(disjointRects.Disjoint(bottom)); debug_assert(disjointRects.Disjoint(right)); } void GuillotineBinPack::MergeFreeList() { #ifdef _DEBUG DisjointRectCollection test; for(size_t i = 0; i < freeRectangles.size(); ++i) assert(test.Add(freeRectangles[i]) == true); #endif // Do a Theta(n^2) loop to see if any pair of free rectangles could me merged into one. // Note that we miss any opportunities to merge three rectangles into one. (should call this function again to detect that) for(size_t i = 0; i < freeRectangles.size(); ++i) for(size_t j = i+1; j < freeRectangles.size(); ++j) { if (freeRectangles[i].width == freeRectangles[j].width && freeRectangles[i].x == freeRectangles[j].x) { if (freeRectangles[i].y == freeRectangles[j].y + freeRectangles[j].height) { freeRectangles[i].y -= freeRectangles[j].height; freeRectangles[i].height += freeRectangles[j].height; freeRectangles.erase(freeRectangles.begin() + j); --j; } else if (freeRectangles[i].y + freeRectangles[i].height == freeRectangles[j].y) { freeRectangles[i].height += freeRectangles[j].height; freeRectangles.erase(freeRectangles.begin() + j); --j; } } else if (freeRectangles[i].height == freeRectangles[j].height && freeRectangles[i].y == freeRectangles[j].y) { if (freeRectangles[i].x == freeRectangles[j].x + freeRectangles[j].width) { freeRectangles[i].x -= freeRectangles[j].width; freeRectangles[i].width += freeRectangles[j].width; freeRectangles.erase(freeRectangles.begin() + j); --j; } else if (freeRectangles[i].x + freeRectangles[i].width == freeRectangles[j].x) { freeRectangles[i].width += freeRectangles[j].width; freeRectangles.erase(freeRectangles.begin() + j); --j; } } } #ifdef _DEBUG test.Clear(); for(size_t i = 0; i < freeRectangles.size(); ++i) assert(test.Add(freeRectangles[i]) == true); #endif } }